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PERFORMANCE OF A 2-18 GHz ULTRA LOW-NOISE AMPLIFIER MODULE

K. B. Niclas and R. R. Pereira
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Abstract:
optimized for best noise figure across the 2-18 GHz band will be

The performance of two-tier matrix amplifiers
discussed. An average noise figure of NF = 2.95 dB with an

associated average gain of G = 19.2 dB has been measured in a
single-stage module using MESFET’s.

1. INTRODUCTION

The MESFET’s used in the experiments have a recessed gate
with the dimensions 0.35 x 200 um. They are fabricated on
MBE substrate material whose active layer is 0.25 pm deep with
a carrier concentration of approximately 4.5 x 1017 ecm™3. The

equivalent circuit parameters under normal operating conditions
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literature [1]. This paper reports on the continuation of these Pin
efforts, which, primarily through the use of a frequency- Figure 1 Block Diagram of the Two-Tier Matrix Amplifier
dependent gate termination, resulted in significant improvements
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amplifier, a device that integrates the principles of additive and 11.0 1.47 0.55 53.0 2.85
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multiplicative amplification in one and the same unit. As shown 13.0 1.5  0.51 62.0 2.98
in Figure 1, the circuit consists of a grid-like network of direct- 14.0 1.59 0.49 67.0 3.05
. . . . 15.0 1.62  0.47 71.0 3.10
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rectangular array of a matrix, which is the underlying reason for
Table I Characteristic Noise Parameters of the MESFET

the amplifier’s name.
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are presented in Figure 2. The devices’ optimum noise figure is
0.2 dB at 2 GHz and 1.7 dB at 18 GHz, while their equivalent
noise resistances R, are located between 400 and 575 across the
2-18 GHz frequency band. The noise data characterizing the

transistor is presented in Table I.
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Figure 2 Equivalent Circuit Parameters of the MESFET

Figure 3 shows the schematic of the 2 x 4 matrix amplifier, which
is the subject of our analysis. The actual circuit is fabricated on
10 mil thick substrate material. All circuit elements have been
optimized for noise figure, gain, gain flatness and, to a lesser
degree, for reflection loss. Special emphasis has been given to
the reduction of the gate termination’s noise contribution by
replacing the commonly used resistor with an impedance
consisting of a resistor shunted by a reactance. The latter has
been realized in the form of a high impedance shorted
transmission line TG and, as shown in Figure 3, was added in
paralle] to the termination resistor Rg- While such a measure
reduces the noise contribution of the gate termination at low
frequencies it simultancously degrades the amplifier’s input
match and gain flatness across the same band over which it
improves the noise figure. The influence of the termination’s
reactance is easily discernible from the computed curves of
Figure 4, which compares the influence of the shorted
transmission line, T (WG = 1.6 mils), for three different line

lengths with the case of a simple resistive termination of
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R = 420 on noise figure, small-signal gain and return loss. The
performance curves in Figure 4 were computed for a circuit iden-
tical to that of Figure 3 after the circuit’s optimization. At that
point all circuit parameters were held constant, except for the
electrical length of the shorted transmission line 83, which was
changed to the values indicated. The graphs clearly reveal the
trade-offs that exist between noise figure and input match, as well
as small-signal gain variation at the low end of the frequency
band. As one would expect, an improvement in overall noise
figure compromises other important performance parameters

such as input return loss and gain variation.
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Figure 3 Schematic of the Two-Tier Matrix Amplifier
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III. EXPERIMENTAL RESULTS

Based on the data gained in our computer studies, a number of
amplifiers were assembled, tuned and tested. However, for
reasons of convenience, the termination reactances of the
experimental amplifiers were realized with 0.7 mil thick bondwire
rather than the 1.6 mil wide transmission line used in the earlier
computations. Due to the wire’s partial suspension in air and its
small diameter, the actual transmission line’s impedance was
higher and its physical length had to be increased over that of the
computed values, which assumed a 10 mil thick substrate made of
fused silica. As shown in the graphs of Figure 5, noise figures of
NF = 3.45 + 0.8 dB and associated gains of G = 18.65 + 0.65 dB
at input VSWR’s < 2.2:1 (RL < -8.5 dB) have been measured in
a single-stage module across the 2-18 GHz frequency band when
employing only a resistor as the gate termination. The resistor
values of this amplifier were Rg = 658, Ry = 21,
R =430 and Ry = 430. Adding a reactance in the form of
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Figure 5 Measured Performance with Ohmic Gate

Termination, Rg = 650
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the above mentioned bondwire of the electrical length 6 = 96°
at 10 GHz in parallel to the gate termination Rz = 650 of the
same module in accordance with Figure 3 resulted in noise
figures of NF = 3.0 + 0.75 dB and gains of G = 18.7 + 0.75 dB
over the same frequency band (Figure 6). The maximum input
VSWR, however, degraded to 3.6:1 (RL < -5.0 dB). In a second
module (RG = 520, Reyy = 179, Ry = 420, and Rp = 420), a
compromise between noise figure, gain variation and input
VSWR was achieved. Its performance parameters, namely,
G=192 £ 065 dB, NF=32%0.6 dB and input VSWR
< 2.55:1 (RL < -7.2 dB) are plotted in Figure 7. In this case, the
electrical length of the bondwire was 85 = 110° at 10 GHz.
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Figure 6 Measured Performance with Complex Gate

Termination, Rg = 659,68 = 969 at 10 GHz

Allowing a larger gain variation of G = +1.8 dB and a maximum
input VSWR of 3.0:1 (RL = -6.0 dB), the noise figures of yet
another module ranged from a maximum of NF = 335 dB to a
minimum of NF = 2.55 dB for NF = 2.95 + 0.4 dB at an average
gain of G = 19.15dB. The curves of this unit’s performance



parameters are plotted in Figure 8 and were obtained at
Rg = 530, Ry = 220, R, = 520, Rpy = 500 and 8 = 70° at

10 GHz.
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IV. CONCLUSION

The above data to the best of our knowledge represent the lowest

noise figures and highest associated gains reported to date over

the 2-18 GHz frequency band. The measured results gain even

more in importance when considering the fact that they were

achieved with MESFET’s rather than the inherently lower noise

HEMT devices.

According to our computations, further

significant improvements in noise figure and gain (NF < 2.75 dB,

G > 20.5 dB) can be expected when using commercially available

HEMT’s
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